A comparison of fMRI adaptation and multivariate pattern classification analysis in visual cortex

نویسندگان

  • Panagiotis Sapountzis
  • Denis Schluppeck
  • Richard Bowtell
  • Jonathan Westley Peirce
چکیده

Functional magnetic resonance imaging (fMRI) has become a ubiquitous tool in cognitive neuroscience. The technique allows noninvasive measurements of cortical responses in the human brain, but only on the millimeter scale. Because a typical voxel contains many thousands of neurons with varied properties, establishing the selectivity of their responses directly is impossible. In recent years, two methods using fMRI aimed at studying the selectivity of neuronal populations on a 'subvoxel' scale have been heavily used. The first technique, fMRI adaptation, relies on the observation that the blood oxygen level-dependent (BOLD) response in a given voxel is reduced after prolonged presentation of a stimulus, and that this reduction is selective to the characteristics of the repeated stimuli (adapters). The second technique, multivariate pattern analysis (MVPA), makes use of multivariate statistics to recover small biases in individual voxels in their responses to different stimuli. It is thought that these biases arise due to the uneven distribution of neurons (with different properties) sampled by the many voxels in the imaged volume. These two techniques have not been compared explicitly, however, and little is known about their relative sensitivities. Here, we compared fMRI results from orientation-specific visual adaptation and orientation-classification by MVPA, using optimized experimental designs for each, and found that the multivariate pattern classification approach was more sensitive to small differences in stimulus orientation than the adaptation paradigm. Estimates of orientation selectivity obtained with the two methods were, however, very highly correlated across visual areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

Brain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...

متن کامل

Decoding working memory of stimulus contrast in early visual cortex.

Most studies of the early stages of visual analysis (V1-V3) have focused on the properties of neurons that support processing of elemental features of a visual stimulus or scene, such as local contrast, orientation, or direction of motion. Recent evidence from electrophysiology and neuroimaging studies, however, suggests that early visual cortex may also play a role in retaining stimulus repres...

متن کامل

fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category

Abstract The lateral occipital complex (LOC) is a set of areas in the human occipito-temporal cortex responding to objects as opposed to low-level control stimuli. Conventional functional magnetic resonance imaging (fMRI) analysis methods based on regional averages could not detect signals discriminative of different types of objects in this region. Here, we examined fMRI signals using multivar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2010